847 research outputs found

    Mechanics of bundled semiflexible polymer networks

    Get PDF
    While actin bundles are used by living cells for structural fortification, the microscopic origin of the elasticity of bundled networks is not understood. Here, we show that above a critical concentration of the actin binding protein fascin, a solution of actin filaments organizes into a pure network of bundles. While the elasticity of weakly crosslinked networks is dominated by the affine deformation of tubes, the network of bundles can be fully understood in terms of non-affine bending undulations.Comment: 5 pages, 3 figures, final version as publishe

    Microrheology, stress fluctuations and active behavior of living cells

    Get PDF
    We report the first measurements of the intrinsic strain fluctuations of living cells using a recently-developed tracer correlation technique along with a theoretical framework for interpreting such data in heterogeneous media with non-thermal driving. The fluctuations' spatial and temporal correlations indicate that the cytoskeleton can be treated as a course-grained continuum with power-law rheology, driven by a spatially random stress tensor field. Combined with recent cell rheology results, our data imply that intracellular stress fluctuations have a nearly 1/ω21/\omega^2 power spectrum, as expected for a continuum with a slowly evolving internal prestress.Comment: 4 pages, 2 figures, to appear in Phys. Rev. Let

    Nucleation-induced transition to collective motion in active systems

    Get PDF
    While the existence of polar ordered states in active systems is well established, the dynamics of the self-assembly processes are still elusive. We study a lattice gas model of self-propelled elongated particles interacting through excluded volume and alignment interactions, which shows a phase transition from an isotropic to a polar ordered state. By analyzing the ordering process we find that the transition is driven by the formation of a critical nucleation cluster and a subsequent coarsening process. Moreover, the time to establish a polar ordered state shows a power-law divergence

    Grain Boundary Scars and Spherical Crystallography

    Full text link
    We describe experimental investigations of the structure of two-dimensional spherical crystals. The crystals, formed by beads self-assembled on water droplets in oil, serve as model systems for exploring very general theories about the minimum energy configurations of particles with arbitrary repulsive interactions on curved surfaces. Above a critical system size we find that crystals develop distinctive high-angle grain boundaries, or scars, not found in planar crystals. The number of excess defects in a scar is shown to grow linearly with the dimensionless system size. The observed slope is expected to be universal, independent of the microscopic potential.Comment: 4 pages, 3 eps figs (high quality images available from Mark Bowick

    Precise Particle Tracking Against a Complicated Background: Polynomial Fitting with Gaussian Weight

    Full text link
    We present a new particle tracking software algorithm designed to accurately track the motion of low-contrast particles against a background with large variations in light levels. The method is based on a polynomial fit of the intensity around each feature point, weighted by a Gaussian function of the distance from the centre, and is especially suitable for tracking endogeneous particles in the cell, imaged with bright field, phase contrast or fluorescence optical microscopy. Furthermore, the method can simultaneously track particles of all different sizes, and allows significant freedom in their shape. The algorithm is evaluated using the quantitative measures of accuracy and precision of previous authors, using simulated images at variable signal-to-noise ratios. To these we add a new test of the error due to a non-uniform background. Finally the tracking of particles in real cell images is demonstrated. The method is made freely available for non-commencial use as a software package with a graphical user-inferface, which can be run within the Matlab programming environment

    Microrheology probes length scale dependent rheology

    Get PDF
    We exploit the power of microrheology to measure the viscoelasticity of entangled F-actin solutions at different length scales from 1 to 100 mu m over a wide frequency range. We compare the behavior of single probe-particle motion to that of the correlated motion of two particles. By varying the average length of the filaments, we identify fluctuations that dissipate diffusively over the filament length. These provide an important relaxation mechanism of the elasticity between 0.1 and 30 rad/sec

    Critical aging of a ferromagnetic system from a completely ordered state

    Full text link
    We adapt the non-linear σ\sigma model to study the nonequilibrium critical dynamics of O(n) symmetric ferromagnetic system. Using the renormalization group analysis in d=2+ϵd=2+\epsilon dimensions we investigate the pure relaxation of the system starting from a completely ordered state. We find that the average magnetization obeys the long-time scaling behavior almost immediately after the system starts to evolve while the correlation and response functions demonstrate scaling behavior which is typical for aging phenomena. The corresponding fluctuation-dissipation ratio is computed to first order in ϵ\epsilon and the relation between transverse and longitudinal fluctuations is discussed.Comment: 5 pages, revtex

    Grain Boundary Scars and Spherical Crystallography

    Get PDF
    We describe experimental investigations of the structure of two-dimensional spherical crystals. The crystals, formed by beads self-assembled on water droplets in oil, serve as model systems for exploring very general theories about the minimum energy configurations of particles with arbitrary repulsive interactions on curved surfaces. Above a critical system size we find that crystals develop distinctive high-angle grain boundaries, or scars, not found in planar crystals. The number of excess defects in a scar is shown to grow linearly with the dimensionless system size. The observed slope is expected to be universal, independent of the microscopic potential
    corecore